precision highp float;
attribute vec3 aPosition;
attribute vec2 aTexCoord;
attribute vec4 aVertexColor;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying vec2 vTexCoord;
varying vec4 vVertexColor;
void main() {
// Apply the camera transform
vec4 viewModelPosition =
uModelViewMatrix *
vec4(aPosition, 1.0);
// Tell WebGL where the vertex goes
gl_Position =
uProjectionMatrix *
viewModelPosition;
// Pass along data to the fragment shader
vTexCoord = aTexCoord;
vVertexColor = aVertexColor;
}
precision highp float;
varying vec2 vTexCoord;
varying vec4 vVertexColor;
void main() {
// Tell WebGL what color to make the pixel
gl_FragColor = vVertexColor;
}Courtesy of Patricio Gonzalez Vivo from The Book of Shaders
float rand(vec2 n) {
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
}
float rand(float n){return fract(sin(n) * 43758.5453123);}
float noise(float p){
float fl = floor(p);
float fc = fract(p);
return mix(rand(fl), rand(fl + 1.0), fc);
}
float noise(vec2 n) {
const vec2 d = vec2(0.0, 1.0);
vec2 b = floor(n), f = smoothstep(vec2(0.0), vec2(1.0), fract(n));
return mix(mix(rand(b), rand(b + d.yx), f.x), mix(rand(b + d.xy), rand(b + d.yy), f.x), f.y);
}